fMRI Activity in the Macaque Cerebellum Evoked by Intracortical Microstimulation of the Primary Somatosensory Cortex: Evidence for Polysynaptic Propagation

نویسندگان

  • Teppei Matsui
  • Kenji W. Koyano
  • Keita Tamura
  • Takahiro Osada
  • Yusuke Adachi
  • Kentaro Miyamoto
  • Junichi Chikazoe
  • Tsukasa Kamigaki
  • Yasushi Miyashita
چکیده

Simultaneous electrical microstimulation (EM) and functional magnetic resonance imaging (fMRI) is a useful tool for probing connectivity across brain areas in vivo. However, it is not clear whether intracortical EM can evoke blood-oxygenation-level-dependent (BOLD) signal in areas connected polysynaptically to the stimulated site. To test for the presence of the BOLD activity evoked by polysynaptic propagation of the EM signal, we conducted simultaneous fMRI and EM in the primary somatosensory cortex (S1) of macaque monkeys. We in fact observed BOLD activations in the contralateral cerebellum which is connected to the stimulation site (i.e. S1) only through polysynaptic pathways. Furthermore, the magnitude of cerebellar activations was dependent on the current amplitude of the EM, confirming the EM is the cause of the cerebellar activations. These results suggest the importance of considering polysynaptic signal propagation, particularly via pathways including subcortical structures, for correctly interpreting 'functional connectivity' as assessed by simultaneous EM and fMRI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct comparison of spontaneous functional connectivity and effective connectivity measured by intracortical microstimulation: an fMRI study in macaque monkeys.

Correlated spontaneous activity in the resting brain is increasingly recognized as a useful index for inferring underlying functional-anatomic architecture. However, despite efforts for comparison with anatomical connectivity, neuronal origin of intrinsic functional connectivity (inFC) remains unclear. Conceptually, the source of inFC could be decomposed into causal components that reflect the ...

متن کامل

Peripheral mechanisms of pleasurable touch

were first studied by Zotterman in cats and suggested that knismesis is carried in part by pain fibers (21). C-fibers, unmyelinated afferents, are putatively involved in pleasurable touch in rodents (22). Central mechanisms of tickling were investigated by functional magnetic resonance imaging (fMRI) in human brains (9); that study, which used tickling stimuli evoking knismesis and observedsoma...

متن کامل

The motor but not sensory representation in motor cortex depends on postsynaptic activity during development and in maturity

Running title: Motor and sensory maps in M1 Abstract The movement representation in the primary motor cortex (M1) of the cat develops between postnatal weeks 7-12. The somatosensory representation in motor cortex is present by the age that the motor map begins to develop. In this study we examined the role of neural activity in development and maintenance of the M1 movement and somatosensory re...

متن کامل

Motor but not sensory representation in motor cortex depends on postsynaptic activity during development and in maturity.

The movement representation in the primary motor cortex (M1) of the cat develops between postnatal weeks 7-12. The somatosensory representation in motor cortex is present by the age that the motor map begins to develop. In this study we examined the role of neural activity in development and maintenance of the M1 movement and somatosensory representations. We blocked activity of M1 neurons unil...

متن کامل

Neuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats

Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012